2018/04/20

要素の数に合わせて

キューブの(3要素)の数

 前項で言いました通り、キューブの(要素)はその数がはっきりしていますから、それに(ユニットの数を一致させる)という考えは、必然的なテーマですね。で、…

「キューブ」は別名「正面体」ですから、(面の数=6)です。次に(辺の数=12)、(頂点の数=8)ですね。そこでこれらキューブの(要素)の数に合わせての、ユニット作例をご紹介しましょう。

 ところで前に阿部さんの推薦図書として「高木貞治(たかぎ ていじ)著 数学小景
岩波書店」という名著に触れましたが、その中に、この(面=Face)と(辺=Edge)と
(頂点=Vertex)との間に在る法則を示した「オイラー(=Leonhard Euler)の多面体定理」についての、とても楽しい解説があります。
 結論だけを示すと、…3種の(要素)の間には、…

V(頂点)+F(面)= E(辺)+2 (高木先生は、点はt、面はm、辺はh、で説明!)

 という関係式が成り立つというものです。ところで痛快なのはその証明で、(多面体)をゴムで出来た球体のように考えて、…いや、門外漢の説明など止しまして、…この定理の証明が、近代数学の一つ、「トポロジー(Topology=位相幾何学)」の出発点となったと言われている、という事実のみ紹介させていただきます。 ほら!『ドーナツとコーヒーカップとは、“穴が一つ空いた図形”で等しいもの。』そんな考え方をする幾何学ですね。

 なおこれまた自慢話に繋がりますが、『この「トポロジーの考えからの一つの発展としての“カタストロフィー理論”という思考」を、日本に最初に紹介された数学者だよ』と、阿部さんに教えられた、早稲田大学の野口宏教授がおられますが、この野口先生は、一方で「あやとり」の著名な研究者でもあられ、…こちらでの関係で、この野口先生と、当時サンリオにおられた阿部恒さん、…そして数年間、ピポ社で一緒に働いた同僚で親友の、ペーパークラフトなどに見事な才能をお持ちのデザイナー小杉恵子さんと私との四人は、サンリオが創刊した「あそびの国」という楽しい雑誌の編集のために、毎月1回集まったものです。 こんな幸運が確か2年ほど続きました。

 まあこの編集会議も楽しかったものですが、終わった後の(呑み会)が、まあ至福のとき! 山国生まれの私が、刺身の真の旨さを教えられたのもこのときでした。
 マグロもサバもヒラメもアジも、タイもイワシも、海の魚はまったく知りませんでしたので、お寿司が美味しいものだと知ったのは、30歳も半ば過ぎてからですが、…まあ、その美味しいと思うものは、イカ、タコ、エビ、それに赤身のマグロに平貝ぐらいで、コハダやウニやトロなどがおいしいと思うようになったのは、…そう、この頃以降のこと。

 そしてこの呑み会で、(白いカレイのエンガワ)とか、(桜色したイワシのお刺身)の初めて知るおいしさには、声をあげるほどの感動でした。
 昔、長野県で知る魚は、鯉、フナ、ワカサギ、…うなぎ、など淡水魚で、海のものは「塩イカ」?…海の無い県としては、イカは生ではなく、塩漬けの真っ白い保存用のものだけでした。(これがまた独特のおいしさのものでした。) まあ現代の方にはきっと想像もできないでしょうが、…私のこども時代はそんなでした。
 あっそれから、フグのおいしさを教えてくれたのは、佐世保市に居られた頃の川崎敏和さんです。(それは、確か私はまだ40代半ばの、煩悩多きときだったか?)

 あれあれともかく、この頃の経験と毎日は、我が人生の絶頂期のものだったようです。…失礼、本題に戻りましょう。

 さて前項では「要素は4つ在る」と言いましたが、(中心)は、それって一つしか在りませんから、数に合わせたユニットにはなりませんので、ここでは用いられませんね。

 でもこの(中心)からの発想は、他の要素に関連付けると、いろいろと考えることは出来て、とても楽しいテーマでしょう。
 ともあれ、「キューブ」という一つのテーマがどんどんと広がって行く様をご覧いただくと、私がこの探求をライフ・ワークにしたこと、きっとご理解いただけるでしょうね。


左から、「面数6に合わせての6ユニット組みキューブ」
中央が「辺数12に合わせての12ユニット組みキューブ」
そして右が「頂点数8に合わせての8ユニット組みキューブ」
そしてここでの自慢は、このユニットの折り方が、ほぼ全て同じ
ということ!

これは(一つしかない中心)を
6つに分けて、外側に引き出す
という思案での作例。    
「菱形12面体」とでも呼ぶ?
 なおここでの使用ユニット数は 
辺の数に等しい12枚です。 

0 件のコメント:

コメントを投稿